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Figure 1: Our GAN architecture generates continuous signed distance functions of shapes. Above objects are obtained via Marching Cubes.

Abstract
This work presents a generative adversarial architecture for generating three-dimensional shapes based on signed distance
representations. While the deep generation of shapes has been mostly tackled by voxel and surface point cloud approaches, our
generator learns to approximate the signed distance for any point in space given prior latent information. Although structurally
similar to generative point cloud approaches, this formulation can be evaluated with arbitrary point density during inference,
leading to fine-grained details in generated outputs. Furthermore, we study the effects of using either progressively growing
voxel- or point-processing networks as discriminators, and propose a refinement scheme to strengthen the generator’s capa-
bilities in modeling the zero iso-surface decision boundary of shapes. We train our approach on the SHAPENET benchmark
dataset and validate, both quantitatively and qualitatively, its performance in generating realistic 3D shapes. Our source code
is available under https://github.com/marian42/shapegan.

1. Introduction

Shape synthesis tackles the task of generating new, diverse, and re-
alistic shapes and is a central problem in many applications requir-
ing high-quality 3D assets. Inspired by the success of generative
adversarial networks (GANs), there has been a tremendous effort
in applying those methods in the 3D domain [GFK∗18, WZX∗16,
ADMG17]. In contrast to images, however, 3D shapes can be
expressed using various different representations [ASS∗18], each
with their own trade-offs across fidelity and efficiency capabilities.

Recently, the implicit shape representation in the form of signed
distance functions (SDFs) emerged to a powerful tool for recon-
structing shapes from prior information [PFS∗19]. Instead of dis-
cretizing space, this approach encodes a fully continuous distance
field while being both efficient and expressive at the same time. In

practice, this formulation has unlimited resolution, models arbitrary
shape topography, ensures watertight surfaces and can be easily
converted to voxels, meshes or point clouds. However, neural net-
works for continuous shape representations have been exclusively
trained to learn latent embeddings via likelihood-based autoen-
coder or autodecoder schemes [PFS∗19, CZ19, MON∗19, LW19].

In this work, we want to explore how we can effectively produce
continuous signed distance fields via generative adversarial mod-
eling. Especially, we study how to combine generated continuous
signed distance fields with either voxel- or point-processing dis-
criminators, and show that both schemes can be easily enhanced
by the usage of progressively growing GANs [KALL18]. Further-
more, we propose a refinement strategy to let our point-based dis-
criminator better focus on the zero iso-surface of shapes, which also
strengthens the generator’s representational power in return.
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(b) Point-based approach

Figure 2: Two-dimensional visualization of our generative pipeline: (a) The voxel-based approach uses a fixed number of stationary points as
input to a 3D CNN discriminator. In contrast, (b) the point-based approach uniformly samples points in space, samples additional points near
the surface based on∇p gθ(z,P), and inputs the refined point set P̃ with their generated SDF values into a point-processing discriminator.

2. Related Work

3D shape analysis and generation has a long history in computer
vision and computer graphics. Here, we focus on the most directly
related works using deep neural networks:

While neural networks can be used to classify triangle
meshes [HHF∗19, FLWM18], they are generally not well-suited
to generate them directly due to inherent dicretization problems.
Therefore, the problem of end-to-end mesh generation is typi-
cally tackled by learning deformations of primitives [SUHR17,
WZL∗18]. However, these approaches are often limited in gen-
erating meshes of the same genus as the base mesh. Further
works [GFK∗18, GYW∗19] circumvent this problem by assem-
bling multiple deformed primitives, but resulting meshes will not
be closed, can have holes and primitives may overlap.

Successful image generation techniques based on convolutional
neural networks (CNNs) [RMC15] have been also applied to raster-
ized 3D representations known as voxel volumes, where each voxel
stores binary occupancy information [WZX∗16] or an SDF value
of the voxel center [DQN17]. However, voxel-based approaches
are memory intensive, and are hence limited to low resolutions that
can only model coarse-grained structures. Although data adaptive
representations such as octrees [TDB17] can reduce the required
memory footprint, it leads to complicated implementations while
still being limited to rather small voxel grid sizes [MON∗19].

Inspired by unstructured methods operating on unordered point
sets [QSMG17], various methods have been proposed to encode
or generate surface point clouds [ADMG17, YHCOZ18, VFM19].
However, those methods rely on reconstructing meshes in a poten-
tially error-prone post-processing step [KH13], and are generally
limited to generating point clouds of fixed sizes.

Recently, the encoding of shapes has been tackled by learning con-
tinuous implicit functions in the form of signed distances [PFS∗19]
or binary occupancies [CZ19, MON∗19, LW19]. These represen-
tations have been shown to be both computationally and memory
efficient and yet allow for obtaining or visualizing high-resolution
geometry via Marching Cubes [LC87] or direct rendering using
Sphere Tracing [Har96], respectively. However, neither of these ap-
proaches apply generative adversarial networks for implicit shape

modeling and instead rely on likelihood-based (encoder-)decoder
architectures. Differentiable variants of Sphere Tracing [LZP∗19]
and Marching Cubes [LDG18] have been proposed to train implicit
shape and voxel representations.

3. Adversarial Generation of Implicit Shape Representations

Our generative adversarial network for synthesizing shapes consists
of a generator and discriminator. Given a random latent code, our
generator produces a continuous three-dimensional signed distance
field, while the discriminator’s job is to provide useful feedback to
improve the generator. Our complete pipeline is shown in Figure 2,
which we will now explain in more detail:

Signed Distance Functions. Given a spatial point p ∈ R3, the
signed distance function SDF(p) ∈ R encodes the point’s distance
to its closest surface point, where the sign indicates whether p lies
inside (−) or outside (+) the object. In contrast to binary occupancy
information, signed distance functions yield additional useful prop-
erties. For example, it allows us to sample a surface point cloud
S = {s1, . . . ,sN} of arbitrary cardinality N by translating uniformly
sampled points pi ∈P = {p1, . . . ,pN} to their closest surface point:

si = pi−SDF(pi) ·∇pi SDF(pi) (1)

Generator. We model our generator in close analogy to the
DEEPSDF [PFS∗19] autodecoder architecture. Given a com-
pact, low-dimensional encoding z ∈ Rd of a complete shape, the
DEEPSDF decoder gθ learns the mapping

gθ(z,p)≈ SDF(p), (2)

where gθ is parametrized via trainable parameters θ and is imple-
mented as an MLP without the usage of any convolutional layers.
Since gθ is conditioned on a latent vector z, the same neural net-
work can be used to model the SDFs of multiple objects. Note that
gθ processes only a single point, but can be nonetheless effectively
trained against the ground-truth SDF value. Overall, this formu-
lation is advantageous over signed distance voxel grids [DQN17]
since it allows us to model the SDF as a continuous function. How-
ever, it cannot be directly applied to a GAN setup since we argue
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that a discriminator is not able to distinguish between real and fake
solely based on the signed distance of a single sample point. In-
stead, the discriminator needs to validate the quality of the signed
distance field as a whole. Therefore, we provide context to the dis-
criminator by evaluating the generator for a batch of points P , and
inject the latent information z to each point pi ∈ P individually:

gθ(z,P)i = gθ(z,pi) (3)

This scheme shares similar advantages to the DEEPSDF decoder.
Although it requires fixed point sizes during training (in analogy to
related point cloud approaches), we can still obtain high-resolution
meshes during inference by varying the sampling density.

We now proceed to present two discriminator variants, a voxel-
based and a point-based approach, to discriminate between real and
generated signed distance fields:

Voxel-based Discriminator. In our first variant, we explore the
possibility of using a 3D CNN as our discriminator dθ similar to
the one proposed by Wu et al. [WZX∗16]. Here, both gθ(z,P) and
dθ(gθ(z,P),P) expect input points P to describe a regular grid of
fixed resolution. Hence, gθ and dθ can be easily combined by re-
arranging the generated SDF values from gθ into a voxel volume.
Although being straightforward to implement, this approach shares
some of the disadvantages of related voxel-based approaches: It
only makes use of a fixed number of stationary points to discrim-
inate between real and fake examples, and is furthermore quite
memory-inefficient to train. However, since gθ is modeled to be
continuous (in contrast to related approaches [WZX∗16,DQN17]),
we can even expect reasonable outputs for points never seen during
training, cf. Section 4.

Point-based Discriminator. An alternative to modeling the dis-
criminator dθ in a voxel-based fashion builts upon recent ad-
vances in permutation-invariant point-processing networks. Instead
of only providing the discriminator with stationary point samples,
we may input any point by making use of the POINTNET archi-
tecture [QSMG17] as our discriminator dθ [ADMG17, VFM19].
Here, uniformly distributed points are first transformed indepen-
dently into a high-dimensional space before a joint representation
is obtained using the permutation-invariant max-pooling operation

dθ(gθ(z,P),P) = γθ

(
max
p∈P

hθ(gθ(z,p),p)
)
∈ R (4)

with p ∼ U(−1,1)3, and γθ and hθ denoting trainable
MLPs [QSMG17]. In contrast to the original POINTNET proposal,
we also inject the respective signed distance to each raw point so
that gθ takes both positional and signed distance information into
account. Compared to the voxel-based approach, this formulation
allows gθ to know about any point in space, instead of solely be-
ing required to generate reasonable outputs for a fixed number of
stationary points.

Note that dθ is not limited to the POINTNET architecture, but may
employ any network architecture that is able to process irregularly
structured data in a permutation-invariant fashion. For example, the
recent works in the field of geometric deep learning provides a
large number of operators to choose from [ASS∗18], with poten-
tial capabililties to also take relational information into account.

Extensions like POINTNET++ [QYSG17] may even improve upon
the results presented in this paper since those methods should be
able to capture more fine-grained details. We leave the usage of
those discriminators for future work.

Zero Iso-surface Decision Boundary. For reconstructing meshes
from SDFs, we are mostly interested in the precise modeling of the
zero iso-surface decision boundary and care less about maintain-
ing a metric SDF for larger distances. While DEEPSDF overcomes
this problem via a more aggressively sampling near the surface of
an object, this solution cannot be applied directly since we do not
know about the object’s surface in advance. Nonetheless, gθ(z,P)
already provides great capabililties to accurately predict the coarse-
grained surface of an object. Following up on Equation (1), we
strengthen the generator’s representational power by sampling ad-
ditional points near the surface of an object based on the generated
SDF values of uniformly distributed points

g̃θ(z,P) = gθ(z,P)
⋃

p∈P
|gθ(z,p)|<δ

{
gθ(z,p−gθ(z,p) ·∇p gθ(z,p)+ε)

}
(5)

with ε∼N (0,σ2)
3
. Here, for each point p ∈ P that is sufficiently

close to a predicted surface (|gθ(z,p)| < δ), we project it onto the
surface using the gradients of gθ w.r.t. p, and sample additional
points following a gaussian distribution. The discriminator then
takes the refined point set

P̃ = P ∪{p−gθ(z,p) ·∇p gθ(z,p)+ ε} (6)

and their respective SDF values as input, and can hence more
specifically draw its attention to the modeling of the zero iso-
surface decision boundary. Note that g̃θ is still fully differentiable
and can hence be trained in an end-to-end fashion using SGD.

Training. For training our generative adversarial networks, we
make use of pre-processed ground-truth distance fields SDF(P)
stemming from human designed meshes. We input both generated
and real samples dθ(gθ(z,P),P) and dθ(SDF(P),P) to the dis-
criminator dθ, respectively, while optimizing for the typical GAN
minimax objective [GPAM∗14]. Furthermore, we noticed that mak-
ing use of progressively growing GANs [KALL18] improves the
training stability and quality of generated objects. That is, we
progressively increase voxel resolution and network depth in our
voxel-based discriminator, and simply increase the number of point
samples in our point-based architecture as training proceeds. Our
generative network gθ does not need to be increased in both cases,
since it is already invariant towards specific resolutions by design.

4. Experiments

We trained our proposed generative architectures on the chair and
airplane categories taken from the SHAPENET repository [CFG∗].
We randomly divide shapes into train/validation/test sets using an
85%-5%-10% split ratio. The data preparation pipeline needs to
handle non-watertight meshes and meshes with inconsistently ori-
ented normals, as both appear in the dataset, cf. Figure 4. Our ap-
proach to data preparation is based on the method employed by
Park et al. [PFS∗19]. We render each mesh from 50 equidistant
camera angles and project the depth buffers back into object space,
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Figure 3: Qualitative examples of generated shapes for (a) the voxel-based discriminator (top), (b) the point-based discriminator (middle)
and (c) the refined point-based discriminator (bottom).

(a) (b) (c)

Figure 4: Calculating SDFs: (a) Small triangles with deviating
normals may produce artifacts in the SDFs [PFS∗19] and (b) are
avoided by using depth information to determine signs. (c) Non-
watertight meshes lead to discontinuous SDFs and are discarded.

Figure 5: Latent space interpolation. The first and last latent codes
were obtained by overfitting shapes of the dataset and the remain-
ing latent codes were obtained by linear interpolation. The images
are rendered with Sphere Tracing [Har96] from signed distance
fields given by our generator network.

resulting in a surface point cloud. For each query point, we then
calculate the distance to its closest surface point. To determine the
sign, we transform the sample point into the viewport coordinates
of each render. We use the depth buffers to check if the point is
closer to the camera than the surface of the shape at the correspond-
ing pixel. A point is considered outside the mesh if it is seen by
any of the virtual cameras. We discard objects with discontinuous
SDFs and those with less than 1% of uniformly sampled points in-
side the shape, resulting in 4189 and 2156 examples for the chair
and airplane categories, respectively. Our pre-processing pipeline
is publicly available on GITHUB.†

† https://github.com/marian42/mesh_to_sdf

Table 1: Quantitative evaluation across SHAPENET categories.

Method JSD MMD-CD MMD-EMD COV-CD COV-EMD

C
ha

ir

[ADMG17] 0.238 0.0029 0.136 33 13
[VFM19] 0.100 0.0029 0.097 30 26

Ours
voxel 0.076 0.0037 0.087 33 36
point 0.082 0.0036 0.088 28 29
refined 0.078 0.0037 0.086 30 28

A
ir

pl
an

e [ADMG17] 0.182 0.0009 0.094 31 9
[VFM19] 0.083 0.0008 0.071 31 14

Ours
voxel 0.093 0.0019 0.066 31 34
point 0.114 0.0026 0.078 28 31
refined 0.072 0.0019 0.070 36 31

Architecture and Parameters. Our generator gθ follows the de-
sign of DEEPSDF [PFS∗19] and is composed of 8 fully connected
layers with hidden dimensionalities of 256, layer normalization and
ReLU activiation. The input is once again reinjected via concate-
nation after the fourth layer. We use 128-dimensional latent vectors
z sampled from a normal distribution. The voxel-based discrimina-
tor uses 3D convolutions with a stride of 2 and a kernel size of 4 to
achieve powers of 2 for all intermediate voxel resolutions, followed
by two dense layers (128, 1) [WZX∗16]. We use four steps of pro-
gressive growing [KALL18] with samples of increasing resolution
(83, 163, 323, 643). The POINTNET discriminator [QSMG17] uses
4 layers with weights shared across the point dimension (64, 128,
256 and 512), followed by global max-pooling and 3 dense lay-
ers (256, 128, 1). We uniformly sample 643 points for ground-truth
SDF values per object, while only using a small but progressively
growing subset of points as input. For training with refined points
P̃ , we sample additional ground-truth values according to Equa-
tion (6).

For optimization, we make use of the WGAN-GP [GAA∗17] ob-
jective and employ RMSPROP with a fixed learning rate of 10−4.
All models have been trained for a maximum of 2000 epochs, while
we select the final model based on validation results.

Results. Qualitative results of our models are shown in Figures 3
and 1. From a visual standpoint, all models generate a diverse set of
convincing shapes, and are able to produce, e.g., thin chair legs and
a precise modeling of the airplane tail. In Figure 5, we demonstrate

https://github.com/marian42/mesh_to_sdf
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(a) 83 (b) 83 interpolated to 1283 (c) 1283

Figure 6: Generalization capabililties of our voxel-based ap-
proach when trained on 83 voxels: (a) A random latent code eval-
uated at 83 raster points, (b) 83 raster points linearly upscaled to
1283, (c) the same latent code evaluated with 1283 raster points.

latent space continuity of our generator by linearly interpolating
between latent codes of dataset shapes.

For a quantitative evaluation, we follow the experimental protocol
of recent generative point cloud approaches [ADMG17, VFM19].
We report the Jensen-Shannon divergence (JSD) between marginal
distributions in the 3D space, and the coverage (COV) and min-
imum matching distance (MMD) based on the Chamfer distance
(CD) and the earth mover’s distance (EMD) between point sets,
cf. Table 1. Point clouds are obtained by sampling 2048 points on
meshes generated via Marching Cubes. Given that the Chamfer dis-
tance is known to be unreliable [ADMG17, VFM19], our results
achieve better or equal values for the metrics under consideration.
In general, the refined point-based approach improves the results
of using uniformly sampled points, while there is not yet a clear
winner between the voxel- and point-based approaches.

Furthermore, the continuous formulation of our generator provides
great generalization capabililties even for points never seen during
training. This is shown by the high-resolution examples from the
voxel-based approach in Figure 3 and a case study in Figure 6.

5. Conclusion

We presented two methods to produce continuous signed dis-
tance fields via generative adversarial modeling. Further works in-
clude the study of more expressive point-processing discrimina-
tors, and the addition of regularization schemes to penalize in-
valid SDFs. In addition, discriminator architectures based on differ-
entiable Marching Cubes [LDG18] or differentiable Sphere Trac-
ing [LZP∗19] could be examined.
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